Systematic Literature Review: The Influence of Intelligence Variation in Adaptive Learning Design

Authors

  • Ahnaf Ahmadin Al Faqir Physics Education, Universitas Negeri Yogyakarta, Sleman
  • Akhmad Reza Nurrizky Physics Education, Universitas Negeri Yogyakarta, Sleman
  • Lena Anggraini Physics Education, Universitas Negeri Yogyakarta, Sleman
  • Nur Cholimah Early Childhood Education, Universitas Negeri Yogyakarta, Sleman

DOI:

https://doi.org/10.63203/040943100

Keywords:

Intelligence Variation, Adaptive learning, Systematic Literature Review (SLR), Multiple Intelligences, Learning Design

Abstract

As adaptive learning systems are increasingly implemented to support personalized education, concerns have emerged regarding their tendency to rely on narrow and reductionist intelligence models. This study aims to analyze the influence of intelligence variations in adaptive learning design through a systematic literature review. Using the PRISMA 2020 protocol, fifteen empirical articles from the period 2010–2025 were critically reviewed. The results show the dominance of rule-based approaches with static profiles that rely on the linguistic-logical-mathematical dimension as the default parameter, ignoring the potential of other dimensions such as naturalist and existential. Artificial intelligence integration offers dynamic personalization potential but poses pedagogical and ethical dilemmas. Empirical evidence in Indonesia confirms the effectiveness of multiple intelligences-based adaptive learning on reading literacy and science creativity, despite constraints related to infrastructure and teacher capacity. The findings lead to three design principles: multimodal flexibility, cultural calibration of measurement instruments, and technology–pedagogical balance. This study recommends the development of hybrid prototypes and ethical standards for the use of cognitive data to realize an inclusive learning ecosystem. The implications of this review indicate that adaptive learning design should move beyond single-intelligence models by adopting culturally calibrated, multimodal, and pedagogically guided adaptation strategies. These implications provide a concrete framework for educators, designers, and developers to design more inclusive and context-responsive adaptive learning systems.

Downloads

Download data is not yet available.

References

Abdiyah, L. (2021). Penerapan Teori Konstruktivistik Dalam Pembelajaran Tematik Di Sekolah Dasar. ELSE (Elementary School Education Journal), 5(2), 127-136. https://digilib.uin-suka.ac.id/id/eprint/55425

Afnan, M. Z., Puspitawati, R. P., & Isnawati, I. (2025). Exploring the role of multiple intelligences: A systematic review for cognitive transformation in biology learning. JPBI (Jurnal Pendidikan Biologi Indonesia), 11(2), 625–637. https://doi.org/10.22219/jpbi.v11i2.40959

Álvarez-Icaza, I. (2024). Adaptive Learning for Complex Thinking: A Systematic Review of Users' Profiling Strategies. Journal of Social Science Education Research. https://www.researchgate.net/publication/381483667_Adaptive_Learning_for_Complex_Thinking_A_Systematic_Review_of_Users'_Profiling_Strategies

Amini, A., & Abdulkadir, A. (2025). Learning Management Strategies Based on Multiple Intelligences to Optimize Children’s Potential: Systematic Review 2015-2024. Cendekiawan: Jurnal Pendidikan Dan Studi Keislaman, 4(3), 840–855. https://doi.org/10.61253/cendekiawan.v4i3.406

Dašić, P., Dašić, J., Crvenković, B., & Serifi, V. (2016). A review of intelligent tutoring systems in e-learning. Annals of the Oradea University – Fascicle of Management and Technological Engineering, 15, 85–90. https://doi.org/10.15660/AUOFMTE.2016-3.3276

Evitarini, A., Erwinda, L., Handoko, H., & Syahputra, Y. (2023). Belajar dan pembelajaran. Eureka Media Aksara.

Fariani, R. I., Junus, K., & Santoso, H. B. (2023). A Systematic Literature Review on Personalised Learning in the Higher Education Context. Technology, Knowledge and Learning, 28(2), 449-476. https://doi.org/10.1007/s10758-022-09628-4

Firza, R. (2024). Pendekatan Discovery Learning Berbasis Multiple Intelligences dalam Pembelajaran IPA di Sekolah Dasar. Pendiri: Jurnal Riset Pendidikan, 2(1), 18-26. https://doi.org/10.63866/pendiri.v2i1.67

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. Basic Books.

Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216

Hilmiyati, F., Guilin, X., & Jiao, D. (2024). Integration of Cognitive Technology in Learning Assessment and Evaluation. Al-Hijr: Journal of Adulearn World, 3(2), 323–334. https://doi.org/10.55849/alhijr.v3i2.668

Kumar, A., Singh, N., & Ahuja, N. J. (2017). Learning styles based adaptive intelligent tutoring systems: Document analysis of articles published between 2001 and 2016. International Journal of Cognitive Research in Science, Engineering and Education, 5(2), 83–98. https://doi.org/10.5937/IJCRSEE1702083K

Kusumaningtyas, D. A., Kurniawan, E. S., & Ashari, A. (2014). Pengembangan handout berbasis Multiple Intelligence untuk meningkatkan kemampuan berpikir kritis siswa kelas X SMA Muhammadiyah Wonosobo tahun pelajaran 2013/2014. Radiasi: Jurnal Berkala Pendidikan Fisika, 5(2), 80-84. Retrieved from https://jurnal.umpwr.ac.id/radiasi/article/view/365

Martin, F., Chen, Y., Moore, R. L., & Westine, C. (2020). Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018. The International Review of Research in Open and Distributed Learning. https://doi.org/10.1007/s11423-020-09793-2

Putra, R. A., Siregar, W. S., & Gusmaneli, G. (2024). Model pembelajaran adaptif: Untuk meningkatkan efektifitas pembelajaran di era digital. ALFIHRIS: Jurnal Inspirasi Pendidikan, 2(3), 01-09. https://doi.org/10.59246/alfihris.v2i3.832

Rahadian, D., Nurhayadi, A., & Rahayu, I. (2024). Multiple Intelligences-Based Learning Guidance at SMAN 1 Garut. Indonesian Journal of Community Empowerment (IJCE), 5(01), 46-52. https://doi.org/10.35899/ijce.v5i01.1099

Saleh, Abd & Salmiah, . (2025). Mengembangkan Potensi Multiple Intelligences Siswa SD melalui Kurikulum Deep Learning. Journal of Humanities, Social Sciences, and Education. 1. 53-64. https://doi.org/10.64690/jhuse.v1i3.48

Sasmita. R, Hiyadatuhzahra & Suyadi. (2024). Application of Multiple Intelligences In Developing Creativity of Lazuardi High School Students In Depok. Indonesian Journal of Educational Development (IJED), 4(4), 483–491. https://doi.org/10.59672/ijed.v4i4.3458

Sholeh, Khabib & Pamungkas, Onok & Sufanti, Main & Sukarni, Semi & Faizah, Umi & Afif, Shaleh. (2025). The Character Education Revolution: The Impact of Multiple Intelligence-Based Reading Learning on Student Development. Educational Process International Journal. 15. https://doi.org/10.22521/edupij.2025.15.186

Syaifulloh, M. (2025). Pengembangan Model Standar Mutu Literasi Sains Berbasis Moodle Dalam Pembelajaran Ipa Dengan Pendekatan R&D Untuk Meningkatkan Literasi Sains Siswa Smp. Aneka Metode Penelitian Pendidikan Di Sekolah, 93.

Wang, X. (2025). Development and techniques in learner model in adaptive e-learning system: A systematic review. Computers & Education. https://doi.org/10.1016/j.compedu.2024.105184

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators?. International Journal of Educational Technology in Higher Education https://doi.org/10.1186/s41239-019-0171-0

Zerkouk, M., Mihoubi, M., & Chikhaoui, B. (2025). A comprehensive review of AI-based intelligent tutoring systems: Applications and challenges. arXiv. https://doi.org/10.48550/arXiv.2507.18882

Downloads

Published

2025-12-28

How to Cite

Al Faqir, A. A., Nurrizky, A. R., Anggraini, L., & Cholimah, N. (2025). Systematic Literature Review: The Influence of Intelligence Variation in Adaptive Learning Design. Jurnal Keilmuan Pendidikan, 1(2), 88–96. https://doi.org/10.63203/040943100